Blog

How to Maintain Pelletizing Quality When Acid Attacks | Plastics Technology

A 360-degree look at resin conveying systems: types, operation, economics, design, installation, components and controls.

This Knowledge Center provides an overview of resin moisture and the drying process, including information on the best drying practices for your manufacturing facility. Pet Bottle Scrap Machine

How to Maintain Pelletizing Quality When Acid Attacks | Plastics Technology

Everything you need to know about plastics compounding technology—from feeding solutions to application profiles and expert advice.

Combat the skilled labor shortage using this comprehensive resource to train your own plastics processing experts.

Deep dive into the basics of blending versus dosing, controls, maintenance, process integration and more.

This Knowledge Center provides an overview of the considerations needed to understand the purchase, operation, and maintenance of a process cooling system.

Learn about sustainable scrap reprocessing—this resource offers a deep dive into everything from granulator types and options, to service tips, videos and technical articles.

While price initiatives for PE and PVC were underway, resin prices had rollover potential for first two months of 2024, perhaps with the exception of PET.

Flat-to-downward trajectory for at least this month.

A mixed bag, though prices likely to be down if not flat for all this month.

Trajectory is generally flat-to-down for all commodity resins.

Flat-to-down trajectory underway for fourth quarter for commodity resins.  

Generally, a bottoming-out appears to be the projected pricing trajectory.

Resin drying is a crucial, but often-misunderstood area. This collection includes details on why and what you need to dry, how to specify a dryer, and best practices.

Take a deep dive into all of the various aspects of part quoting to ensure you’ve got all the bases—as in costs—covered before preparing your customer’s quote for services.

In this collection of articles, two of the industry’s foremost authorities on screw design — Jim Frankand and Mark Spalding — offer their sage advice on screw design...what works, what doesn’t, and what to look for when things start going wrong.

In this collection, which is part one of a series representing some of John’s finest work, we present you with five articles that we think you will refer to time and again as you look to solve problems, cut cycle times and improve the quality of the parts you mold.

Gifted with extraordinary technical know how and an authoritative yet plain English writing style, in this collection of articles Fattori offers his insights on a variety of molding-related topics that are bound to make your days on the production floor go a little bit better.

In this three-part collection, veteran molder and moldmaker Jim Fattori brings to bear his 40+ years of on-the-job experience and provides molders his “from the trenches” perspective on on the why, where and how of venting injection molds. Take the trial-and-error out of the molding venting process.

Mike Sepe has authored more than 25 ANTEC papers and more than 250 articles illustrating the importance of this interdisciplanary approach. In this collection, we present some of his best work during the years he has been contributing for Plastics Technology Magazine.

In this collection of content, we provide expert advice on welding from some of the leading authorities in the field, with tips on such matters as controls, as well as insights on how to solve common problems in welding.

Mold maintenance is critical, and with this collection of content we’ve bundled some of the very best advice we’ve published on repairing, maintaining, evaluating and even hanging molds on injection molding machines.

Thousands of people visit our Supplier Guide every day to source equipment and materials. Get in front of them with a free company profile.

Medical-component specialist LightningCath has carved a niche meeting the needs of small to medium-sized entrepreneurs with complex catheter designs … quickly.

Plastics Technology is closing in on its 70th anniversary. Here are some of Editorial Director Jim Callari’s observations to commemorate the occasion.

As with everything else, there are pros and cons, but more of the former. They provide processors higher rates while decreasing the temperature of the extrudate while enabling downgauging.    

The drop in plastics activity appears to be driven by a return to accelerated contraction for three closely connected components — new orders, production and backlog.

Beginning the first of this year, 12 states are following EPA bans on potentially damaging cooling fluids. Chiller suppliers have adjusted equipment designs to accommodate the new regulations. Here’s what all this means to processors.  

Pairing external big picture training with internal job-specific instruction can help your process technicians meet quality expectations as well as production targets.

In less than a decade in injection molding, US Merchants has acquired hundreds of machines spread across facilities in California, Texas, Virginia and Arizona, with even more growth coming.

Demand for bioresins is growing in molded goods, particularly as a sustainability play to replace fossil-fuel based materials, but these materials are not a drop-in replacement for traditional materials. Molds and hot runners need to be optimized for these materials.

There are many things to consider, and paying attention to the details can help avoid machine downtime and higher maintenance costs — and keep the customer happy.

Flat-to-downward trajectory for at least this month.

Topping five other entries in voting by fellow molders, the Ultradent team talks about their Hot Shots sweep.

Serendipitous Learning Opportunities at PTXPO Underscore the Value of Being Present.

Introduced by Zeiger and Spark Industries at the PTXPO, the nozzle is designed for maximum heat transfer and uniformity with a continuous taper for self cleaning.

Ultradent's entry of its Umbrella cheek retractor took home the awards for Technical Sophistication and Achievement in Economics and Efficiency at PTXPO. 

technotrans says climate protection, energy efficiency and customization will be key discussion topics at PTXPO as it displays its protemp flow 6 ultrasonic eco and the teco cs 90t 9.1 TCUs.

Shibaura discusses the upcoming Plastics Technology Expo (PTXPO) March 28-30

Competition will invite participants to help reshape life cycle management in plastics.

Sign up to attend North America’s leading trade show for plastics.  

Offerings range from recycled, biobased, biodegradable  and monomaterial structures that enhance recyclability to additives that are more efficient, sustainable and safer to use.  

Ahead of the first NPE since 2018, PLASTICS announced that its triennial show will stay in Orlando and early May for ’27, ’30 and ’33.

New features of NPE2024 aim to “bring the whole plastics ecosystem together to innovate, collaborate and share findings.”  

Hundreds of tons of demonstration products will be created at NPE2024 next spring. Commercial Plastics Recycling strives to recycle all of it.

Mixed in among thought leaders from leading suppliers to injection molders and mold makers at the 2023 Molding and MoldMaking conferences will be molders and toolmakers themselves. 

After successfully introducing a combined conference for moldmakers and injection molders in 2022, Plastics Technology and MoldMaking Technology are once again joining forces for a tooling/molding two-for-one.

Multiple speakers at Molding 2023 will address the ways simulation can impact material substitution decisions, process profitability and simplification of mold design.

When, how, what and why to automate — leading robotics suppliers and forward-thinking moldmakers will share their insights on automating manufacturing at collocated event.

As self-imposed and government-issued sustainability mandates approach, injection molders reimagine their operations.

August 29-30 in Minneapolis all things injection molding and moldmaking will be happening at the Hyatt Regency — check out who’s speaking on what topics today.

Get your clicking finger in shape and sign up for all that we have in store for you in 2023.  

Molding 2023 to take place Aug. 29-30 in Minnesota; Extrusion 2023 slated for Oct. 10-12 in Indiana.

Key technologies — such as multicolor molding, film molding and PUR overmolding for both exterior and interior applications — are at the forefront of this transformation. Join this webinar to explore the vast potential of eMobility in molding large components — including those with fiber reinforcements — thereby driving the need for large injection molding cells with a clamping force of up to 11,000 tons. You will also gain insight into Engel's innovative two-stage process, a solution for future recycling processes. This webinar will provide an in-depth overview of challenging applications, production concepts and best practices, including:       BMW iX front panel production cell Smart rear panels concept based on IMD and 2C molding Sustainability concepts based on two-stage process Large tonnage equipment for battery moldings

In today's manufacturing environment, robust processes that meet strict industry and regulatory standards are essential. With the advent of servo-driven ultrasonic welding technology, enhancing product quality and maintaining consistency has become remarkably effortless. Discover the fundamentals of ultrasonic welding, delve into vital components within these systems, explore how servo-driven ultrasonic welding enhances weld quality via advanced control features and gain insights into optimizing your assemblies for welding in these high-performing machines. Join Dukane to unlock the potential of ultrasonic welding in modern manufacturing for plastic devices and components. Agenda: Fundamentals of ultrasonic welding Key components in an ultrasonic welding system Using servo-driven ultrasonic systems to control your welding process Designing your parts and components for servo-controlled ultrasonic welding

This webinar will help you make informed decisions to confirm the equipment access stairs in your facility are OSHA compliant and meet the highest standards of safety and ergonomics. Agenda:  Identifying opportunities to increase safety in the work place Utilizing space saving stairways Ensuring code compliance for equipment access

4.0, EUROMAP, OPC, OLE, QC, DSN, SQL, VNC, MES, ERP, FTP, CMS, SPI — are you confused by all buzzwords being tossed around in the plastics industry? Not convinced the data collection is necessary? Or are you unsure of how it could be implemented and improve your molding processes? Wittmann has been on the cutting edge of the data collection push for nearly 20 years. In this webinar, take a step back from the idea of the manufacturing facility of the future and discuss what you can do today to improve your process. Using readily-available technology, Wittmann can help reduce downtime, limit scrap and wasted material, and predict required maintenance. Let the experts at Wittmann help you understand: what data can be collected, what that data can be used for, what systems are used, and how to implement them. Agenda: Demystifying the terminology Tracking the material flow and lot information through the material handling system The data available from various auxiliary equipment, such as: dryers, blenders, mold temperature controls and robots Automating the process through changes in the data collected at the machines during production Adding visualization to increase productivity

Learn how targeted, modular, dosing and blending solutions — covering powders, granules, regrinds and liquids — provide plastics processors of all kinds with best-in-class accurate dosing while delivering significant raw material savings and ensuring highest quality.  Agenda:  Introduction to Movacolor Blending in plastics applications Movacolor feeding and dosing technology Hybrid blending to combine high material throughput and dosing accuracy

This presentation will explore the in-situ polyurethane (PU) overmolding of injection-molded and composite parts, allowing for direct out-of-mold class "A" surfaces. KraussMaffei will review the process and equipment required. It will also discuss tooling types currently available for PU systems for this process. KraussMaffei will compare the pros and cons of this technology over currently-available coating and painting systems. Agenda: Introduction and evolution of the ColorForm technology Overview of the ColorForm process Equipment required Tooling and PU systems Benefits of the system compared to typical spray-applied coatings Pros and cons of the technology

The global plastics industry has been navigating through what is arguably the most volatile period in decades. Unprecedented amounts of new production capacity are scheduled to start in North America, Europe, and China in the near term and compete for demand during a period of economic challenges. How will trade flows shift? Will this lead to regional cost disparities and rationalization? Energy transition and sustainability targets continue transforming the plastics market and increasing the competitive landscape. As the market evolves, what impact will new technology, policy, regulation, the growing role of chemicals versus fuel and other factors have on industry restructuring and business models? At GPS 2024, leading global experts will come together to discuss pivotal impacts and initiatives shaping the plastics industry. Join us and participants from across the globe to gain the latest insight and deep analysis as you connect with your peers and industry professionals. This year’s conference will explore the theme Disruptive Global Dynamics Reshaping Plastics and include a full day workshop focused on the Global Plastics Business and Plastics Transition to Circularity, 1.5 days of expert content and numerous networking functions.

Every three years, leaders from almost every major industry gather at NPE to advance their businesses through innovations in plastics. The largest plastics trade show in the Americas, NPE offers six technology zones, keynote speakers, workshops and opportunities to build partnerships. 

The 3D Printing Workshop @ NPE2024 – The Plastics Show, is an immersive, half-day workshop focused on the emerging possibilities for part production via 3D printing and additive manufacturing. Presented by Additive Manufacturing Media, Plastics Technology and MoldMaking Technology, the 3D Printing Workshop will build upon a successful model first introduced at IMTS 2014. Attendees will benefit from a program focused on practical applications of 3D technologies related to plastics processing. This event will conclude with a 3D Printing Industry Reception sponsored by Additive Manufacturing Media.

The Society Plastics Engineers (SPE) Extrusion Division and the SPE Eastern New England Section will co-host the Screw Design Conference-Topcon on June 19-20, 2024 @ UMass Lowell in Lowell, MA.  This highly technical program will focus upon screw design principles for single and twin screw extruders with wide ranging topics relating to screw designs for feeding, melting, mixing, venting and pumping plastics products and parts.   Areas of focus will include screw designs for melt temperature and gel management, gel minimization, bioplastics, recycled materials and foaming.   In addition to the technical sessions, a tour of the UMass Lowel Plastics Processing Laboratories will be integrated into Day 2 of the event.    This program is not just for screw designers, but to help anyone responsible for any type of extrusion operation to evaluate existing extrusion equipment; and also to prepare for future projects. Price to attend:  Less than $1000!  Registrations will be accepted in early 2024. Call for papers – To be considered to give a presentation, please submit a talk title and abstract on or before December 15 to:   Technical Chair: Eldridge M. Mount III, e-mail emmount@msn.com Corporate sponsorships - A limited # of corporate sponsorships (15) are available on a 1st come basis.  Included is a 6’ tabletop display (must fit on table), denotation in all promotional activities, and 1 no charge registration.  To become a sponsor contact: Charlie Martin, Leistritz Extrusion, e-mail cmartin@leistritz-extrusion.com, cell 973-650 3137 General information:   A reception on Day 1 and a tabletop display area will allow the attendees to meet and discuss state-of-the-art screw technologies with industry experts.  The SPE Extrusion Division will issue a “Screw Design Certificate” to all participants who have attended the program.  Students are encouraged to attend and will receive a discounted rate.   For additional information contact:  Program Chair:  Karen Xiao, Macro Engineering, KXiao@macroeng.com

Debuting in 2010, the Parts Cleaning Conference is the leading and most trusted manufacturing and industrial parts cleaning forum focused solely on delivering quality technical information in the specialized field of machined parts cleansing. Providing guidance and training to understand the recognized sets of standards for industrial cleaning, every year the Conference showcases industry experts who present educational sessions on the latest and most pressing topics affecting manufacturing facilities today.  Discover all that the 2022 Parts Cleaning Conference has to offer!

Presented by Additive Manufacturing Media, Plastics Technology and MoldMaking Technology, the 3D Printing Workshop at IMTS 2024 is a chance for job shops to learn the emerging possibilities for part production via 3D printing and additive manufacturing. First introduced at IMTS 2014, this workshop has helped hundreds of manufacturing professionals expand their additive capabilities.  

Developments in the chemistry of polymers and additives have made corrosion a real problem in pelletizers. Here’s how to ward it off.  

Underwater rotary pelletizers are increasingly being attacked by acid. The growing use of biopolymers is one reason for this trend, as materials such as PLA may contain free lactic acid. However, the problem involves commodity resins too, as their chemistry continues to evolve.

Over the last five years, maintenance technicians here have been working with customers pelletizing polyolefins that have reported unusual local damage to pelletizer die plates and other components. Issues that were originally thought to be limited to a few isolated cases are now becoming widespread. The root cause turns out to be acids used or created during production, and also antioxidants or other additives to control tails that are injected into the cooling water.

At its worst, chemical attack can destroy a die plate and bring production to a halt (Figure 1). Especially in large-scale polyolefin production, where pelletizers may be expected to operate for months at a time, such unplanned shutdowns are extremely costly.

FIG 1 Acid attack has caused serious damage on the cutting face of this pelletizer. Photos: Maag

In the case of biopolymers, manufacturers and processors acknowledge that there is a lot still to be learned, so corrosion problems are less of a surprise — and the scale is generally rather small. For polyolefin producers, on the other hand, unexpected corrosion can be very bad news. An unplanned shutdown to change a die plate typically takes 24 hours or more, and at 100 tons/hour this can have serious knock-on effects for the upstream refinery. Clearly, it is better to anticipate corrosion issues before they trigger unplanned downtime.

The problem lies in today’s evolving polymer recipes and additive packages, as well as the growing popularity of biopolymers. These new products, undeniably more technical and complex, bring with them their share of production challenges. And where corrosion is concerned, these challenges often show up in the pelletization process — the link between polymer production and finished plastic products.

The key issue is that these new recipes may introduce acids in amounts that are sufficient to cause corrosion in key locations, while remaining difficult to detect in bulk materials.

It is better to anticipate corrosion issues before they trigger unplanned downtime.

Typically, cooling water circulating around the pelletizer remains neutral or alkaline, so manufacturers may not believe they have an acid problem. At the die plate itself, however, very local acid attack can damage critical areas around the extrusion nibs, even when there is little or no change in the bulk pH.

The underwater cutting head, composed of a die plate on the extruder side and a knife holder and knives on the pelletizer side, forms a set of wear parts. Their performance depends mainly on their ability to support a predictable number of thermal and mechanical stress cycles, leading to equally predictable maintenance and production continuity. However, with the development of new polymers or additives, new constraints and phenomena are emerging.

FIG 2 The cutting face of a new die plate. Note the sharp edges of the holes in the tungsten carbide nibs.

Even in cases less extreme than that of Figure 1, the sharp edges of the extrusion nozzles in a new die plate (Figure 2) can become rounded (Figure 3), leading to loss of cut quality and substandard pellets. This, in turn, may shorten equipment life from years to months, and even force unplanned shutdowns. Accelerated wear also causes poor pellet quality, which manufacturers may address by adding chemicals to control tails. Ironically, this can make the problem worse as the additives contribute to corrosion of the die plate.

FIG 3 Cutting face showing accelerated wear due to local chemical attach, which has reduced the sharpness at the edges of the extrusion holes.

Back in 1979, leading pelletizing suppliers began to use tungsten carbide for the pelletizer nibs, which is the area through which the polymer is extruded during the process. This was a breakthrough in terms of equipment life, thanks to the extreme hardness of the carbide material.

As it turns out, however, in some circumstances the tungsten carbide can be vulnerable to acid attack. Tungsten carbide is not a homogeneous material; typically, microscopic carbide grains are embedded in a matrix of metal or ceramic to provide mechanical strength and toughness. Not all grades of tungsten carbide are created equal, and under the wrong conditions the granular structure represents a gateway to chemical attack.

Allowing the knives to wear at a controlled rate makes them self-sharpening and protects the costly die plate.

The bulk of the die plate is traditionally made from stainless steel, and this too can be vulnerable to corrosion, along with the joints between the stainless steel and the tungsten carbide nibs. A solution is to make the die plates from superalloys such as Hastelloy or Inconel, and the extrusion nibs from grades of tungsten carbide chosen for their corrosion resistance. We also pay attention to the brazing process used to attach the nibs.

The resulting Hybrid Acid Resistant (HAT) die plate (Figure 4) combines standard stainless steel for strength with Inconel and high-performance tungsten carbide for ultimate corrosion resistance. 

FIG 4 Die plate incorporates parts made from solid Inconel for maximum corrosion resistance.

Thanks to the use of solid materials instead of surface treatment, the HAT die plate has been proven to significantly increase die-plate life while reducing shutdowns and off-spec pellets. In practice, the die plates can last up to 10 times longer, provided they’re traditional equivalents under corrosive conditions and, in some cases, the improvement has been dramatic. One PLA manufacturer, for instance, was originally able to run for just five days before the die plate needed to be reground. With updated materials, the material supplier can now achieve six months before regrinding.

Of course, the die plate is only part — although a very important part — of the complete pelletization system. For instance, another key engineering decision is to make the cutting knives from a titanium carbide composite that is less hard than the tungsten carbide nibs. Enabling the knives to wear at a controlled rate makes them self-sharpening and protects the costly die plate.

An example is the Central Injection System (CIS) shown in Figure 5. With a die plate 1,500 mm in diameter and a central water injection system, this handles throughputs up to 100 tons/hour with up to 30% longer service life compared to traditional solutions.

FIG 5 Cutting-head system with central water injection.

CIS includes a self-aligning knife holder with a grooved cone and sword-shaped knives. It is an effective solution for high melt index or peroxided polymers. Water is directed through the die plate toward the cutting face, improving pellet cooling and ejection. By making use of the existing process water supply, the CIS system contributes to reducing waste and water consumption.

Trace quantities of acids resulting from new polymers, new blends and new additives can cause expensive damage to pelletizer die plates and, in some cases, other equipment along the production chain. To reduce costly shutdowns, careful attention to materials choice can improve the corrosion resistance of die plates and other key items.

About the Authors: Pierre LeRoy has been head of engineering role at AMN since 2021. In that role, he leads a team of engineers tasked with choosing the optimal design for each customer’s application. LeRoy’s team drives quality by ensuring product performance, on-site installation, operators' training and technical assistance. Contact: maag.com

Margaux Pierens is the director of operations at AMN based in Normandy, France. She worked at AMN in 2015 prior to moving to the U.S. While in the U.S. she spent time working in both New York and Texas and in 2018 returned to AMN, France.

Here’s a guide to specifying screws and barrels that will last under conditions that will chew up standard equipment.

You may be thinking of buying one of the new ‘high-torque/high-speed’ twin-screw compounders in order to raise your output without going to a larger machine. But how much torque or speed do you really need? Underusing a high-powered extruder wastes investment dollars. So look carefully at what is required for the materials you run.

Over the past several years, significant innovations have occurred in the area of polypropylene nucleation.

There are many techniques known to operators and plant engineers for increasing the performance of a twin-screw compounding extruder.

In underwater pelletizing, numerous variables in the equipment, process and material affect pellet shape, consistency and quality factors such as fines. Defining the “perfect” pellet depends on the conditions of end use, and achieving that ideal requires understanding  of the causes of imperfections.

There’s a shift to underwater pelletizing systems as compounders strive to produce higher-quality pellets. But underwater pelletizers are not general-purpose tools. Follow these steps to help ensure you maintain throughput, pellet quality and efficiency.

Consumer-product brand owners increasingly see advanced chemical recycling as a necessary complement to mechanical recycling if they are to meet ambitious goals for a circular economy in the next decade. Dozens of technology providers are developing new technologies to overcome the limitations of existing pyrolysis methods and to commercialize various alternative approaches to chemical recycling of plastics.

How to Maintain Pelletizing Quality When Acid Attacks | Plastics Technology

Pvc Profile Making Machine Plastics Technology covers technical and business Information for Plastics Processors in Injection Molding, Extrusion, Blow Molding, Plastic Additives, Compounding, Plastic Materials, and Resin Pricing. Learn More